FULL MODEL ANSWERS

Q1. NON-CALCULATOR

Stuart throws a biased coin 10 times. He gets 7 Tails.
Maxine throws the same coin 50 times. She gets 30 Tails.
Prasha is going to throw the coin once.
(i) Whose results will give the better estimate for the probability that she will get Tails, Stuart's or Maxine's? You must give a reason for your answer. Ignore the number of Tails!

probability of getting Tails, as she she... trials.
(ii) Use Stuart's and Maxine's results to work out an estimate for the probability that Prasha will get

$$
\begin{align*}
& \text { Tails. } \\
& P(\text { Tails })=\frac{\text { Total number of tails }}{\text { Total number of trials }} \\
&=\frac{7+30}{10+50} \tag{37}
\end{align*}
$$

(fraction, decimal or $\%$)

David has designed a game. He uses a fair 6-sided dice and a fair 5-sided spinner.
The dice is numbered 1 to 6 . The spinner is numbered 1 to 5 .

Each player rolls the dice once and spins the spinner once. A player can win $£ 5$ or win $£ 2$
(Total for question = $\mathbf{2}$ marks)

Q2. NON-CALCULATOR

Win $£ 5$	
roll a 5 and spin a 5	
	Win £2 roll a 1 or spin a 1 or both

David expects 30 people will play his game. Each person will pay David $£ 1$ to play the game.
(a) Work out how much profit David can expect to
$P\left(\right.$ Win $\left.^{\prime}\right)=\frac{1}{6} \times \frac{1}{5} \quad P\left(\right.$ win $\left.^{\prime}\right)=\frac{1}{6} \times \frac{4}{5}+\frac{1}{5} \times \frac{5}{6}+\frac{1}{6} \times \frac{1}{5}$

$$
=\frac{1}{30}
$$

$$
=\frac{4}{30}+\frac{5}{30}+\frac{1}{30}
$$

Expect 1 person
out of 30 to
(bin $₹ 5$

$$
=\frac{10}{30}
$$

$$
\text { Expect } 10 \text { people to win } £ 2
$$

$$
\begin{gathered}
\text { Income: } 30 \times 1=£ 30 \\
\text { Outgoings: }(1 \times 5)+(10 \times 2)=£ 25 \\
30-25 \\
£ .5
\end{gathered}
$$

(b) Give a reason why David's actual profit may be different to the profit he expects to make.
 the actual......results..... maydifferent.

Visit MlathsUpGrade.co.uk for Questions, Clues \& Solutions

Q3. CALCULATOR ALLOWED

There are only blue counters, green counters, red counters and yellow counters in a bag.
George is going to take at random a counter from the bag.
The table shows each of the probabilities that George will take a blue counter or a green counter or a yellow counter.

Colour	blue	green	red	yellow	Sum of probability of mutually exclusive outcomes is 1.
Probability	0.5	0.2		0.25	

(a) Work out the probability that George will take a red counter.

$$
\begin{align*}
P(\text { red }) & =1-P(\text { blue })-P(\text { green })-P(\text { yellow }) \\
& =1-0.5-0.2-0.25 \tag{1}
\end{align*}
$$

There are 120 counters in the bag.
(b) Work out the number of green counters in the bag.

counters

$$
=0.2 \times 120
$$

\qquad

Q4. CALCULATOR ALLOWED

Number on dice	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Probability	$\mathbf{0 . 3 1}$	0.17	0.18	0.09	0.15	0.1

Neymar rolls the biased dice 200 times.
Work out an estimate for the total number of times the dice will land on 1 or on 3

$$
\begin{aligned}
& \text { First find } P \text { (one) Number of times } \\
& P \text { (one) }=1-0.17-0.18-0.09-0.15-0.1 \\
& =0.31 \\
& P(\text { one or three })=0.31+0.18 \\
& =0.49 \\
& \text { Number of times } \\
& \text { to land on }=P \text { (one or three) } \times \text { Number } \\
& \text { one or three } \\
& =0.49 \times 200
\end{aligned}
$$

Visit MlathsUpGrade•co.uk for Questions, Clues \& Solutions

Q5. CALCULATOR ALLOWED

Here is a 4 -sided spinner.

The table shows the probabilities that when the spinner is spun it will land on 1 , on 3 and on 4

The spinner is spun once.

Number	1	2	3	4
Probability	0.2		0.4	0.1

(a) Work out the probability that the spinner will land on 2

Sum of probabilities of all mutually exclusive outcomes is

$$
P\left(+w_{0}\right)=1-0.2-0.4-0.1
$$

0.3
(b) Which number is the spinner least likely to land on? Smallest probability

Jake is going to spin the spinner 60 times.
(c) Work out an estimate for the number of times the spinner will land on 1
$\begin{aligned} & \text { Number of times }=P(1) \times \underset{\text { Number of }}{\text { spins }} \\ & \text { land on 1 } \\ &=0.2 \times 60\end{aligned}$
12
(Total for question = 4 marks)
Q6. CALCULATOR ALLOWED

Coin	Probability
A	0.33
B	0.033
C	$\frac{1}{3} 0.3$
D	$30 \% \quad 0.3$

Four biased coins, A, B, C and D are thrown.
The probability that each coin will land on Heads is shown in the table.
(a) (i) Which coin is least likely to land on Heads?

> Smallest probability
(ii) Which coin is most likely to land on Heads?
biggest probability
\qquad

Julie says "The probability that coin C will land on Heads is the same as the probability that coin C will land on Tails."
(b) Is she correct? Give a reason for your answer.
 out.conves and are..........nutually.....exclusive, the...............must..... sum to.............However $\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$ so...................................urong.

Coin B is going to be thrown 4000 times.
(c) Work out an estimate for the number of times coin B will land on Heads.

Number of
$\begin{aligned} & \text { times coin } \\ & \text { will land on }\end{aligned}=P($ Heads $) \times \begin{aligned} & \text { Number } \\ & \text { of throws }\end{aligned}$
Heads

$$
\begin{equation*}
=0.033 \times 4000 \tag{132}
\end{equation*}
$$

QT. CALCULATOR ALLOWED

There are only red counters, blue counters and green counters in a bag.
number of red counters : number of blue counters : number of green counters $=1: 3: 7$
A counter is going to be taken at random from the bag.

> Total parts
> $=1+3+7=11$
(a) Complete the table below to show each of the probabilities that the counter will be red or blue or green.

Colour	red	blue	green
Probability	$\frac{1}{11}$	$\frac{3}{11}$	$\frac{7}{11}$

Jamie takes at
random a counter from the bag and records the colour of the counter.
He then puts the counter back in the bag.
Jamie does this a number of times.
He records a total of 68 blue counters.
(b) Work out an estimate for the total number of times Jamie takes a counter from the bag.

$$
\begin{aligned}
\begin{array}{l}
\text { Number of } \\
\text { times gets a } \\
\text { blue }
\end{array} & =P(\text { blue }) \times \begin{array}{c}
\text { Number of } \\
\text { attempts }
\end{array} \\
68 & =\frac{3}{11} \times \begin{array}{c}
\text { Number of } \\
\text { attempts }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
68 & =\frac{3}{11} \times \begin{array}{l}
\text { Number of } \\
\text { attempts }
\end{array} \\
68 \div \frac{3}{11} & =\begin{array}{l}
\text { Number of } \\
\text { attempts }
\end{array}
\end{aligned}
$$

QB. CALCULATOR ALLOWED
There are 300 seeds in a packet of flower seeds. Each seed will grow into a white flower or a yellow flower or a red flower.

The probability of a seed growing into a white flower is 0.62 45 of the seeds are expected to grow into yellow flowers.

One of the seeds is chosen at random from the packet. What is the probability that this seed will grow into a red flower?

Colour	White	Yellow	Red
Probability	0.62	$45 \div 300$ $=0.15$	$?$

Sum of probabilities of all mutually exclusive outcomes is !.
(Total for question = 3 marks)
Q9. CALCULATOR ALLOWED
There are only blue counters, yellow counters, green counters and red counters in a bag. A counter is taken at random from the bag.

The table shows the probabilities of getting a blue counter or a yellow counter or a green counter.

Colour	blue	yellow	green	red
Probability	0.2	0.35	0.4	0.05

(a) Work out the probability of getting a red counter. Sum of probabilities of all mutually exclusive outcomes is 1 .

$$
\begin{equation*}
1-0.2-0.35-0.4=\ldots .0 .5 \tag{1}
\end{equation*}
$$

(b) What is the least possible number of counters in the bag?

You must give a reason for your answer.
Assume smallest probability equals I counter
$0.05=\frac{1}{20} \quad 20$ counter is the least possible
number.....o.f.....counter.s.. \qquad

